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Abstract

In this study, we used deep learning to model spatio-temporal interactions between
diverse objects with varying shapes, materials, and colors based on basic physics
principles, across an 11-frame video. The aim was to predict the 22nd frame
and generate a semantic segmentation mask for precise object classification. For
frame prediction, we trained advanced deep learning models in a self-supervised
manner, finding SimVP, a CNN-based architecture, particularly adept at capturing
dynamic scene changes and excelling in predicting the 22nd frame. In semantic
segmentation, we implemented UNet, a widely-used CNN architecture, which
proved effective in accurately classifying objects in the frame.

1 Introduction and Related Work

Video frame prediction revolves around predicting future frames through the comprehension of
object interactions across prior frames, necessitating the grasp of temporal and spatial dependencies
to extrapolate and forecast subsequent frames. Conversely, semantic segmentation involves the
classification of individual pixels within an image or video frame into precise semantic categories,
thereby offering a comprehensive breakdown of scene composition and detail.

The realm of video frame prediction has garnered significant attention within the deep learning
community due to its diverse applications, such as autonomous driving, traffic flow estimation, human
motion projection, and the facilitation of representation learning. For instance, a practical application
involves the anticipation of a potential collision between a car and a pedestrian by analyzing their
respective trajectories. Prior research endeavors in this domain have been categorized into four distinct
groups based on the architectural composition involving encoders, translators, and decoders[1].

The first category, comprised of CNN-CNN-CNN architectures, relies solely on convolutional mecha-
nisms. Notable models within this category, like SimVP[2] and DVF[3], demonstrate high efficiency
in their predictive capabilities. The second category, CNN-ViT-CNN architectures, incorporates
a Vision Transformer to capture spatiotemporal features. Examples of models falling under this
category include Swin LSTM[4], Latent Video Transformer[5], and VideoGPT[6]. Recent efforts
such as TAU[7] and VPTR[8] have been directed towards enhancing the computational efficiency
of Transformer models for video prediction tasks. The third category, CNN-RNN-CNN models,
leverages variations of the LSTM network to forecast future latent states via recurrent neural net-
works (RNNs). Distinguished models in this category, such as E3D-LSTM[9], and PhyDNet[10]
exhibit predictive capabilities using RNN-based methodologies. Lastly, the fourth category, RNN-
RNN-RNN architectures, relies entirely on recurrent networks for frame prediction. Models like
ConvLSTM[11] and PredRNNv2[12] operate within this category, demonstrating the effectiveness of
recurrent network structures in this domain.
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2 Dataset

The dataset utilized in this project has three constituents: unlabeled videos, labeled training videos,
and labeled validation videos. There are a total of 13,000 unlabeled videos that have 22 frames each
and do not have a corresponding ground truth segmentation mask. The labeled training and validation
videos both contain 1000 videos each, with each video having 22 frames. For the labeled videos, a
full segmentation mask is provided for each frame. Each of the videos contains simple 3D shapes that
interact with each other following the basic rules of physics. Objects have three shapes, namely cube,
sphere, and cylinder, eight colors, namely gray, red, blue, green, brown, cyan, purple, and yellow and
two materials, namely metal and rubber. No video contains duplicate objects. The task is to predict
the semantic segmentation mask of 22nd frame given the first 11 frames on a hidden set. Each of the
frames has a dimension (160× 240× 3).

3 Methods

We used a two-step approach for predicting the mask of the 22nd frame of the videos. First, we
predicted the future 11 frames from the first 11 frames using a frame prediction model (SimVP)
and then used these predictions as an input to the segmentation model (U-Net) to predict the final
semantic segmentation masks. We trained each model independently.

3.1 Video Frame Prediction

Architecture: We opted for the SimVP architecture to train our frame prediction model as it is
the most commonly used architecture for this purpose. SimVP relies on a Convolutional Neural
Network (CNN) design that consists of three components. The spatial extractor extracts spatial
features from the input frames, the translator is responsible for extracting temporal features crucial
for understanding the video’s dynamic evolution and the decoder upsamples the frames generated by
the translator, contributing to the final predicted frames, thus, combining the spatial and temporal
patterns extracted by the previous modules. The encoder model has 4 blocks of Conv2D, GroupNorm,
and LeakyReLU. The translator consists of 8 Inception modules with every module having a different
kernel size from the set (3,5,7,11). Finally, the decoder model consists of 4 blocks of each made up
of ConveTranspose2D, GroupNorm and LeakyReLU.

Training Details: We fed the first 11 frames of the video as input to the SimVP model and the
model’s task was to predict the next 11 frames as output, each having dimension (160× 240× 3).
The training process spanned 75 epochs. We utilized the Mean Squared Error (MSE) Loss as the
standard loss function. To regulate learning during training, we employed an On-cycle Learning Rate
(LR) scheduler.

Enhancements: In addition to SimVP, we experimented with various Metaformer models as potential
translators in SimVP, leveraging the OpenSTL framework. We also tried to replace the standard MSE
Loss with a frame-weighted MSE. This involved assigning the highest weight to the 22nd frame in a
harmonic progression. However, this modification did not yield practical improvements. Exploring
alternative approaches, we experimented with predicting only the 22nd frame. However, both of
these techniques proved impractical in practice.
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3.2 Semantic Segmentation

The segmentation task was addressed using the UNet architecture, a proven and widely adopted
convolutional neural network (CNN) design. UNet comprises three main components: an encoder,
a bottleneck, and a decoder. The encoder captures spatial features from the input, the bottleneck
consolidates these features, and the decoder reconstructs the spatial information. The encoder consists
of 4 blocks each containing 2 stacks of Conv2D, LayerNorm and ReLU with MaxPooling applied
after each block. The decoder consists of 4 blocks each containing a ConvTranspose2D, and 2 stacks
of Conv2D, LayerNorm and ReLU. The output from decoder is passed through a Conv2D layer with
kernel size= 1. It was observed that the final predictions from SimVP were blurred. Hence, to train
UNet on images that were similar to SimVP outputs, we adopted blur augmentation on images input
to UNet. The model was trained for 20 epochs with cross-entropy loss as the classification involved
classifying each pixel into one of the 49 classes possible.

3.3 Error Analysis

Since the segmentation model performed well with an Average IoU of 0.96 over the validation set, it
was clear that the scope of improvement was higher in the Frame prediction models. We performed
a qualitative error analysis to identify the scope of further improvement and found that the SimVP
could only accurately predict static objects in the video frames. For moving objects, it predicted an
average blurry prediction. Future work will address improving the frame prediction model.

4 Results

The segmentation model with UNet architecture performed well with an Average IoU of 0.96
over the entire validation set. For the Video Prediction task, Table 1 shows that sequential and
transformer-based models exhibited approximately four times the training time per epoch compared
to convolution-based models. SimVP2 with gated spatio-temporal attention, achieved the lowest
MSE, but the original SimVP model outperformed in terms of the Jaccard index with the full pipeline.
Note that, Table 1 metrics are reported after 20 epochs of each model.

The final pipeline resulted in a Jaccard Index of 0.2721 on the validation set and 0.2727 on the
hidden set in the final leaderboard of the competition.

5 Conclusion & Future Work

This project successfully developed a deep learning pipeline capable of predicting segmentation masks
with high accuracy, particularly for non-moving objects in video sequences. The core strengths of
this system lie in its robust segmentation model and the individual efficiency of the Video Prediction
and Segmentation models. However, challenges arise when these models are combined, leading to a
noticeable distribution shift, which leads to a high error.
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Model Train MSE Val MSE Wall Time (h) / Epoch Jaccard Index

1 SimVP 51.29 67.92 0.6 0.24
2 SimVP + gSTA (SimVP2) 48.89 47.55 0.5 0.23

3 SimVP + Swin Transformer 127.25 126.76 2.2 0.21

4 SimVP + ViT 127.20 126.75 1.9 0.22

5 SimVP + PredRNNv2 121.61 180.31 2.3 -
Table 1: Metaformer models for SimVP

In future work, this pipeline could be significantly enhanced by incorporating labeled training data
to improve the accuracy of the frame prediction model. Additionally, implementing a filtering
mechanism to exclude videos where new objects appear after the initial 11 frames would allow the
model to focus on more consistent scenarios and improve prediction accuracy. There is also scope for
post-processing the model outputs that will improve the final Jaccard Index.
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