
Causal Inference (APSTA-GE 2012) Code link

Causal Counterfactual Forecasting
Sargun Nagpal

Center for Data Science, NYU
sargun.nagpal@nyu.edu

Abstract
To make informed decisions, decision-makers must forecast the potential outcomes that are
likely to occur when they take a certain course of action. This involves predicting counterfactual
outcomes under different treatment alternatives over time. For example, an e-commerce business
may be interested in forecasting the sales of its products over time under different pricing
interventions and performing what-if analyses to plan its business strategy. Training supervised
machine learning models on historical observational data is incorrect since counterfactual data is
absent, and empirical risk minimization does not account for interventions that were not
undertaken. In this work, I adopted the Counterfactual Recurrent Network (CRN), originally
developed to predict counterfactuals on a simulated tumor growth dataset with a single temporal
and static covariate, and modified it to work on any time-series dataset. I evaluated the model on
the American Causal Inference Conference (ACIC 2023) challenge dataset, studied the causal
assumptions of the model, and discussed their plausibility in a real-world business setting.

Motivation
An extensive body of research has been conducted on causal inference in longitudinal studies,
where confounders and treatments vary over time. Early methods, such as Marginal Structural
Models (MSMs)1 used Inverse Probability of Treatment Weighting (IPTW) to remove the effect
of time-dependent confounding. In recent years, deep neural networks have been widely adopted
to estimate counterfactual outcomes. The Recurrent Marginal Structural Network (R-MSN)2 uses
a Recurrent Neural Network to estimate the IPTW weights and a seq2seq architecture to forecast
counterfactuals under a given sequence of treatments. The Counterfactual Recurrent Network
(CRN)3 uses the concept of domain adversarial training to learn a treatment-invariant
representation of a unit’s history to remove the bias from time-dependent confounding. This
latent representation is used in an LSTM based seq2seq architecture like the R-MSN to forecast
outcomes under different treatment plans. The Causal Transformer4 claims to improve existing
methods by adopting the Transformer network to learn these representations, which are better at
capturing long-range temporal dependencies. Notably, most of the recent methods have been
evaluated on a tumor growth dataset5 or on data from healthcare settings.

In this study, I report the findings of training the Counterfactual Recurrent Network on data
simulated by the organizers of the American Causal Inference Conference (ACIC 2023) data
challenge6. It is suggested that the data reflects what a decision-maker might use in deciding item
prices. Therefore, I focus on an example of an e-commerce business that wants to implement a
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dynamic pricing strategy to maximize its sales. The main contributions of this work are as
follows:

1. Evaluation of a counterfactual forecasting model (CRN) outside the healthcare
setting. As mentioned above, most recent methods, including the CRN, have been
evaluated on a simulated tumor growth dataset5 or data in the healthcare domain. In this
work, I evaluated the model on the ACIC challenge dataset, which mirrors data in an
e-commerce business setting.

2. General purpose implementation of CRN to work with any time-series dataset. The
open-source implementation7 of CRN only works with the simulated tumor dataset. Upon
close assessment, I found that it assumes the same data for both the encoder and the
decoder (one static variable, and one temporal variable- same as the outcome). However,
real-world datasets usually contain multiple temporal and static variables, and the
decoder only requires the static covariates, since temporal covariates are not available at
inference time. Therefore, I prepared a data-processing notebook and modified the CRN
code so that it could be used with any time-series dataset. Finally, I prepared a script to
infer future outcomes for the ACIC challenge. The full log of modifications made in the
original code can be found here.

3. Discussion of the plausibility of causal assumptions. While all the studies listed above
state the necessary assumptions for causal claims, the plausibility of these assumptions in
real-world settings are skimmed over or omitted entirely. In this work, I discuss these
assumptions in the context of the e-commerce example and argue that they are difficult to
satisfy in practice.

To motivate interest in the problem, Figure 1 shows some applications of counterfactual
forecasting in the context of our example.

Figure 1: Applications of counterfactual estimation in an e-commerce setting. The plots
show the effect of pricing (treatment) on sales (outcome) of a product over time. (A) Predicting
the optimal treatment plan. In plan 1 (red), a heavy discount is offered (Z=2) to create a demand
for the product, and then the price is reduced back to normal (Z=0), while in plan 2 (blue), a
small discount is offered (Z=1) for a prolonged period. Plan 1 is predicted to lead to higher
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sales. (B) Optimal time of treatment. Starting a discount campaign (Z=1) at time tstart (blue)
instead of time t’start (red) is forecasted to lead to lower sales. (C) Retrospective Counterfactual
Analysis. The sales of a product diminished heavily (gray). It is predicted that if a discount was
offered at time tintervention , the demand for the product could have been retained (red).

ACIC data and competition set up

For the ACIC 2023 competition, we are given a simulated observational time-series dataset of
outcomes under different treatment levels. The description of the columns is not given. However,
drawing analogy to our e-commerce problem, the data consist of the sales (Outcome) of about
4000 products for 95 weeks each, under one or more of 6 different pricing strategies (Treatment).
The sample size is about 371k, with six covariates - four static and two temporal. The goal is to
predict the sales of each item for the next 5 weeks (weeks 96-100) under each of the six different
pricing strategies. Therefore, we make 30 predictions per unit. Table 1 describes the columns in
the dataset with possible interpretations in the e-commerce world. A more detailed exploratory
data analysis can be found here.

S
no. Attribute Data type Statistics Variable type Interpretation

1 unitID Categorical 3908 units - Product IDs

2 weekID Numeric Range: 1-95 - Time steps

3 Outcome Numeric Bimodal, right skewed.
Min=0, Med=243, Max=3854 - Sales

4 Treatment Categorical
6 levels.

Z=0, 5 make up 70% of the data - Pricing strategy

5 X1 Numeric
Right skewed.

Min=21, Med=36, Max=400 Static Average Historic Sales

6 X2 Numeric Range of over 150k Temporal Inventory count

7 X3 Binary
Remains 0 about 90% time,
Continuous time spans of 1 Temporal High demand indicator

8 C1 Categorical
15 levels

Equally distributed categories Static Product category

9 C2 Categorical
2495 levels. 60% levels

only appear for a single product Static Fine-grained category

10 C3 Categorical 6 levels,
Almost equally distributed

Static Store ID

Table 1: Data characteristics. There is one outcome variable, one treatment variable with six
levels, and six covariates. Some covariates are unit-level static features, while others are
temporal features. The interpretation of the features in an ecommerce setting is presented in the
last column.
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For cross-validation, I partitioned the data into a 80:10:10 train-validation-test split (297k, 37k,
37k records, respectively). I log-transformed the outcome and continuous variables to reduce the
skew and scale them, and one-hot encoded the categorical variables. I dropped variable C2 to
avoid the curse of dimensionality since it is a categorical variable with 2495 levels. Note that the
implications of this on ignorability are discussed in the Assumptions section. Finally, I processed
the data for the CRN encoder and decoder. The encoder takes the observed data: the static
covariates, current temporal covariates, and the previous treatment as input at each time step and
performs a 1-step ahead prediction. The decoder takes the current intended treatment, previously
predicted outcome, and static features as input and performs both 1-step ahead and 5-step ahead
predictions.

Estimand

We aim to estimate the counterfactual outcomes for each unit at future time steps. Thus we are
interested in the expected value of the potential outcome at time t+𝜏 under a sequence of
treatments from time t to t+𝜏-1, given the observed data till the current time step t.
Mathematically, the estimand can be written as follows.
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The chosen estimand minimizes the squared loss of the prediction. This aligns with the objective
of the ACIC competition to minimize the Root Mean Squared Error (RMSE) of prediction over
all time steps and counterfactual states for each unit.
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where i = Unit number, t = Time step, z = Treatment level, y = True outcome, ŷ = Predicted outcome,
N = Total units (3908), Nt = Number of time steps (5), Nz = Number of treatments (6).

RMSE is commonly used to evaluate continuous predictions and measures how far the
predictions are from the true values on average. However, a disadvantage of using RMSE is that
it heavily penalizes outliers.



Methods

Background on why supervised learning models fail and time-dependent confounding
Cross-sectional observational studies suffer from the problem of selection bias, where the
treatment group can differ from the control group in terms of covariates that are also predictive
of the outcome. In such cases, any difference in observed outcomes cannot be attributed to the
treatment alone. Accordingly, these covariates that predict both the treatment and the outcome
are called confounders. Furthermore, the two groups could have a lack of balance and overlap.
Therefore standard machine learning models trained on these data make strong assumptions in
parts of input space where no data is observed, and may not be generalizable8.

In a temporal study, we have the additional problem of time-dependent confounding. The
treatment assignment at time step t affects the values of covariates in subsequent time steps,
which in turn affect the choice of future treatments. Therefore, the covariates at time t+1 are
post-treatment variables since their value is determined by prior treatments. These confounders
are called time-varying confounders. For instance, in our e-commerce example, offering a heavy
discount (Z=2) on a product at time step t with low demand (X3=0) may significantly increase its
demand (X3=1) at time t+1, which would in turn affect future pricing. Furthermore, the effect of
the confounder on the outcome could change with time (time-modified confounding)9. In such
settings, supervised learning methods can be unreliable because the training data is affected by
the treatment policy, and since these models only fit observed data, they do not generalize to
predict the outcome when the policy changes10. It is worth noting, however, that some studies
show that machine learning models achieve similar performance to causal counterfactual models
when the degree of time-dependent confounding is low3.

Domain Adversarial Training

The CRN model is based on the idea of domain adversarial training of neural networks11. If the
train and test distributions are different in a machine learning problem (domain shift), then
models trained on the train set do not generalize well on the test set. A naive way to deal with
this problem is to only train on features that have similar distributions in the two datasets. Ganin
et al. extended this idea to learn input representations that cannot discriminate between whether
input examples belong to the train or test set, but at the same time, are predictive of the output.
Therefore, the learned input representations for the train and test set are similar, despite having
different covariate distributions. The adversarial loss function aims to minimize the outcome
prediction loss and maximize the domain prediction loss. This helps achieve domain adaptation.

Counterfactual Recurrent Network (CRN)

The CRN model uses this idea to learn a latent representation of a unit’s current state, that is
predictive of the next step outcome, but not the next treatment. Therefore, even though the value
of the confounders is influenced by prior treatments, the representation at the current time step
cannot discriminate between what treatment will be assigned next. Therefore, this
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‘treatment-invariant’ representation removes the effect of time-dependent confounding. Figure 2
shows the architecture of the CRN network, which consists of an encoder that learns the
treatment invariant balancing representation , and a decoder that is used to makeϕ(𝐻

𝑡
)

autoregressive predictions for a given sequence of treatments.

Figure 2: Architecture of the Counterfactual Recurrent Network. Figure sourced from Bica
et al 3. The left half shows the encoder network, which learns the balancing representation from
the unit history (past confounders and treatment values). The right half shows the decoder
network, which uses the balancing representation, and an intended sequence of treatments to
produce output predictions.

The encoder is an LSTM-based recurrent network, which at each time step t takes the temporal
and static confounders (Xt and V) and the prior treatment Zt-1 as input. A treatment classifier
(cross-entropy loss) and an outcome predictor network (L2 loss) are fitted to the output state.
These are responsible for the domain adversarial learning, which helps to learn treatment
invariant representations. Mathematically, for k𝑃(ϕ(𝐻

𝑡
 | 𝑍 = 1)) =  ... = 𝑃(ϕ(𝐻

𝑡
 | 𝑍 = 𝑘)) 

treatment levels.

The decoder is also a LSTM-based recurrent network that is initialized by the output of the
encoder. It takes the static variables (V), outcomes produced at prior stages Ŷt+1, and the intended
treatment assignment zt as inputs and produces intermediate balancing representations as well as
next-step output predictions Yt+𝝉.

Implementation details

The encoder and decoder are trained in sequence. The decoder is initialized with the balancing
representations from the trained encoder. For both the components, I used the default
hyperparameters for the number of hidden units of the LSTM (24), the treatment classifier (36),
balancing representation dimension (12), Dropout (0.1), and trained the models for 150 and 100
epochs respectively till convergence on an NVIDIA GeForce GTX 970M GPU. I performed
hyperparameter tuning on the learning rate. The results can be found in the results section.
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Causal Assumptions

Sequential Ignorability

It is necessary to make several assumptions to claim that the model can make causal
counterfactual predictions. First, we need to assume that conditional ignorability is satisfied,
which means that there are no unmeasured confounders. The ACIC organizers declared that this
is true; however, in practice, it is hard to satisfy this for an observational study. For example,
product popularity could be a missing confounder in our example. A highly marketed product
could have high sales and may not need aggressive pricing treatments, compared to one that is
not. Even if we measure a large number of possible confounders, we should do a sensitivity
analysis to understand if there is potential unmeasured confounding. Moreover, for the temporal
setting, we need to make a stronger assumption called the sequential ignorability. Under this
assumption, we assume that at any time, the potential outcomes are independent of the treatment
given all prior observed data - the past covariates and treatment histories.
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Note that I dropped a categorical variable from the analysis since it had very high cardinality
(2495 levels, with ~60% levels appearing for only 1 unit). This was done to avoid making the
data high dimensional, which could cause potential issues with model training. However, this
leads to a violation of the above assumption.

Overlap

Next, we need to assume that we have non-zero overlap. While diagnostic plots can help assess
overlap issues for single covariates, it is hard to check lack of overlap in higher dimensions. The
ACIC instructions tell us that there is a lack of complete overlap, which means that the
probability of some treatments given a history of prior treatments and covariates is zero. In our
example, it is plausible that some treatments are never assigned for certain products. For
example, it may be against the company’s policy to offer heavy discounts on expensive items
such as jewelry or watches. Mathematically, this assumption can be expressed as:
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SUTVA

Finally, we need to assume SUTVA (Stable Unit Treatment Value Assumption), which implies
that there is no spillover across units. For our example, this means that the pricing strategy of one
product should not affect the sales of other products. But this can easily be violated since
offering a discount on one product could lead to a decline in sales of other related products. The
ACIC instructions claim to satisfy this assumption, however.

In summary, it can be observed that we need to make very strong causal assumptions for



counterfactual forecasting, which are unlikely to be satisfied in an observational study. Hence, it
is important to state the plausibility of these assumptions when we use these models. It is worth
noting, however, that these techniques can remove the bias from time-dependent confounding
and therefore, may be less biased than standard supervised models.

Results & Diagnostics
The encoder was trained for 150 epochs and achieved an RMSE of 1.28 on the validation set.
Figure 3A, shows the learning curves for the total, outcome, and treatment loss. It can be
observed that both the total loss and the treatment loss decreased with time and converged in
about 100 epochs. We expect the treatment loss to increase, but it remains roughly constant.
Figure 3B shows the results from hyperparameter tuning of the learning rate. The best value was
found to be 0.005. The decoder training (Figures 3C, 3D) exhibited a similar behavior. The
decoder achieved a RMSE of 1.32 on the validation set for 1-step ahead prediction, and 2.24 for
5-step ahead prediction.

Figure 3: Model Training diagnostics. (A) Learning curve of Total, Outcome and Treatment
loss with number of epochs for the Encoder. (B) Hyperparameter tuning of learning rate for the
Encoder. Total validation loss wrt learning rate. (C) Learning curves for the Decoder. (D)
Hyperparameter tuning of learning rate for the Decoder.

Table 1 compares the results of the model with a baseline persistence forecast model, which
predicts the last observed value of the outcome for all future time steps.

Model RMSE on log-transformed output RMSE on raw output

CRN 3.08 116.24

Persistence (Baseline) 0.73 2.10

Table 1: Model results on the test set. The outcome variable was log-transformed before fitting
the model. The RMSE is reported on both the log-transformed and unscaled output. The baseline
persistence model performs better than the CRN model.

The CRN model performs worse than the baseline model. The bias is further amplified when the
log-transformed predictions are exponentiated back to the original scale. Note that scaling the
output is important to avoid the outcome and treatment losses being at very different scales. In



this case, the adversarial loss would simply prefer to minimize the outcome loss, since that
would lead to a large dip in the total loss. Trying different scaling techniques on the outcome
variable can be explored as a next step. The density plot of the residuals of the model shows a
long left tail. This means that the model systematically overestimates the true values. Further
investigation is necessary in this regard as well.

Discussion

In this study, I tested the CRN model for counterfactual prediction on the ACIC 2023 dataset,
programmed it to make it more general-purpose, and discussed the assumptions of the model.
The problem of counterfactual forecasting has interesting applications in various domains. For
example, a quant trader could benefit from forecasting potential outcomes under different trading
strategies. An oncologist could benefit from knowing if they should use chemotherapy or
radiotherapy on a patient, how the patient’s tumor will likely shrink with time in response to
different treatments, and deciding when to stop the treatment.

Analyzing causal assumptions has been an important focus of our class, and thinking through the
plausibility of these assumptions (like we did with various in-class examples), led me to the
revelation that although the technicalities of these models are fascinating, the assumptions under
which a causal prediction can be made with these models are very strong, and are likely to be
violated in an observational study.

Limitations

This study has several limitations. The final CRN model underperformed the baseline model and
requires further investigation. Nevertheless, I posted a submission to the ACIC challenge in the
spirit of participation. The reliance on strong causal assumptions discussed above is another
major limitation. A sensitivity analysis must be carried out to check the plausibility of the
assumptions. Finally, LSTM models are slow to train as they are not parallelizable, and do not
capture long-range temporal context as well as other state-of-the-art methods for time series data.

Challenges

I faced numerous challenges in completing this work. A major hurdle was understanding and
modifying the CRN source code. I also struggled with understanding the related methods and the
sequential ignorability assumption. However, the process of learning about the topic and
assessing the veracity of the causal assumptions was immensely satisfying.

Future work

As part of future work, I would like to investigate ways to improve the model predictions by
experimenting with different transformations on the outcome variable, doing an error analysis,
and hyperparameter tuning of additional hyperparameters. I would like to benchmark the model
against standard supervised learning approaches such as ARIMA, and LSTMs, as well as other
causal models such as R-MSNs, and Causal Transformers. Furthermore, I would like to do a



qualitative analysis of the balancing representations by performing dimensionality reduction and
plotting them to inspect if the representations are indeed treatment-invariant. Finally, the CRN
paper claims that it is possible to obtain uncertainty estimates of the outcome predictions, which
is a useful next extension to explore.
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