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 ABSTRACT 
 In  this  project,  we  used  a  11.6  GB  real-world  dataset 
 of  music  listening  behavior  containing  data  on  ~8000 
 users,  over  23  million  tracks  and  179  million 
 user-track  interactions  to  build  an  implicit  feedback 
 music recommender system using Spark. 

 We  preprocessed  and  partitioned  our  data, 
 implemented  a  baseline  and  Latent  Factor  model,  and 
 evaluated  the  model  recommendations.  We  compared 
 the  multi-node  performance  with  a  single  machine 
 implementation,  and  investigated  ways  to  accelerate 
 inference  using  approximate  search.  The  ALS  model 
 achieved  a  MAP@100  of  0.064  and  NDCG@100  of 
 0.15 on the test set. 

 METHODOLOGY 

 1.  Data Preprocessing 
 Since  the  songs  in  our  dataset  need  to  map  to  distinct 
 IDs,  we  first  produced  unique  IDs  for  each  track.  We 
 removed  duplicate  interactions  (~15k)  in  the 
 interactions  table.  Over  45%  tracks  only  had  a  single 
 interaction,  therefore,  we  did  not  remove  tracks  with 
 few  interactions.  We  also  did  not  remove  tracks  with  a 
 very  large  number  of  interactions,  since  this  would 
 bias  the  results  of  our  popularity  model.  Furthermore, 
 for  the  ALS  model,  we  performed  hyper-parameter 
 tuning  on  the  count  importance,  thus  invalidating  the 
 removal  of  tracks  with  high  interaction  count.  On  the 
 user  level,  we  did  not  clip  users  with  interaction 
 counts  at  the  ends,  since  we  define  our  popularity 
 model  based  on  the  number  of  distinct  users  per 
 track. 

 2.  Cross-Validation split 
 We  compared  several  data  splitting  strategies  for 
 reco  mmender  sy  stems  [1]  .  Although  the  Temporal 
 Global  split  is  the  most  strict  and  realistic  setting,  it 
 reduces  the  number  of  users  and  tracks  in  the  train 
 set  and  aggravates  the  cold-start  problem.  Therefore, 
 we  used  a  Temporal  User  80:20  split  to  partition  each 
 user’s  data  into  the  Train  and  Validation  set  based  on 
 the  interaction  timestamp.  This  strategy  is  better  than 
 a  random  split  since  it  accounts  for  the  time  of 

 interaction  for  each  user.  However,  it  suffers  from  the 
 data  leakage  problem  since  the  split  boundary  for 
 each  user  is  not  uniform.  Table  1  shows  the  statistics 
 of our data. 

 Dataset  Users  Tracks  Interactions 
 Train  7852  21.1 M  143.5 M 
 Val  7909  9.0 M  35.9 M 
 Test  7125  1.9 M  50.0 M 

 Table 1:  Data Characteristics. 

 3.  Modeling 

 3.1  Baseline Popularity Model 
 We  tried  three  approaches  to  define  track  popularity 
 for  our  baseline  model:  Number  of  interactions  per 
 user,  Number  of  distinct  users,  and  Number  of 
 interactions  per  track  [2]  .  We  used  a  damping  factor  β 
 for  the  interactions  per  user  model,  and  performed 
 hyperparameter  tuning  on  the  validation  set  with  β 
 values 1, 10, 50, 200, 500, 1000, and 10000. 

 3.1.1  Evaluation 
 We  calculated  the  Precision@100,  which  gives  a 
 measure  of  the  proportion  of  correct  predictions; 
 MAP@100,  which  rewards  the  top  ranking  of  correct 
 predictions;  and  NDCG@100,  which  discounts 
 recommendation  relevance  based  on  the  rank  and 
 normalizes  the  resulting  discounted  cumulative  gain. 
 Table 2  shows the results of the baseline model. 

 Evaluation 
 Dataset 

 Popularity 
 Metric 

 Damping 
 Factor 

 MAP@10 
 0 

 NDCG@10 
 0 

 Validation 
 Set 

 # 
 Interactions/user 

 =1  0.000012  0.00011 

 =10  0.000018  0.00023 

 =50  0.00004  0.0005 

 =200  0.00011  0.0021 

 =500  0.00106  0.01173 

 =1000  0.00306  0.02158 

 =10000  0.00485  0.02853 
 # Distinct Users  -  0.00893  0.03697 

 # Interactions  -  0.00508  0.02913 
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 Test Set 

 # Interactions/ 
 user  =10000  0.00098  0.00871 

 # Distinct Users  -  0.00086  0.00815 

 # Interactions  -  0.00097  0.00869 

 Table 2:  Results of the Baseline popularity model. 

 Baseline  model  with  popularity  metric  as  Number  of 
 interactions  per  user  performs  the  best  on  the  test  set 
 (with  =10000  as  tuned  using  the  validation  set).  Note 
 that  with  high  values  of  beta,  this  metric  closely 
 approximates the number of interactions per track. 

 3.2  Latent Factor Model 

 In  order  to  create  personalized  recommendations  for 
 users  using  collaborative  filtering  techniques,  we 
 employ  latent  factor  models.  These  models  enable  us 
 to  learn  a  condensed  representation  of  users  and 
 items  in  a  low-dimensional  latent  space  based  on 
 implicit  feedback  data  from  past  user-item 
 interactions.  By  estimating  these  latent  factors,  the 
 model  can  predict  the  missing  feedback  in  the  utility 
 matrix  for  each  user-item  combination,  which  we  use 
 for the recommendations. 

 3.2.1  Alternating Least Squares 

 Due  to  the  scale  of  the  data,  we  trained  the  model 
 using  the  pyspark.mllib.recommendation  (Spark 
 v3.1.2)  implementation  of  alternating  least  squares 
 (ALS)  on  the  NYU  Dataproc  environment,  while  using 
 HDFS  for  storing  the  intermediate  files,  results  and 
 model checkpoints. 

 3.2.2  Model Selection 

 To  perform  hyper-parameter  tuning  for  the  latent 
 factor  model,  we  tune  3  parameters  -  alpha  (Counts 
 weights  for  implicit  feedback),  regparam 
 (regularization  parameter)  and  rank  (dimension  of 
 latent  representation)  by  varying  them  individually, 
 while  keeping  the  other  parameters  fixed  to  establish 
 the  trend.  Then,  we  narrow  the  search  space  for  the 
 hyperparameters,  for  the  higher  rank  models.  All  the 
 tuning  is  done  on  a  validation  set  generated  as 
 discussed in Section 2. 

 From  Figure  1a  ,  It  is  clear  that  alpha  of  0.5  achieves 
 the  best  result,  with  a  marginal  improvement  over 
 alpha  of  0.8  and  very  bad  performance  at  alpha  1.2. 
 This  suggests  that  with  a  very  high  weights  to  the 
 implicit  feedback  (interactions  count),  we  are 
 encouraging  the  model  to  adjust  the  factors  to 
 account  for  very  high-magnitude  counts,  which  results 
 in  overfitting  on  the  training-set  and  poor 
 generalization performance on the validation set. 

 Figure 1a:  MAP as a function of alpha with fixed 
 Rank 20, Regparam 0.01 

 Figure 1b:  MAP as a function of rank with fixed 
 alpha 0.5, Regparam 0.01 

 Rank  defines  the  dimension  of  the  latent  factor 
 representations,  and  a  higher  dimensional 
 representation  implies  increased  model  complexity.  It 
 is  evident  that  a  higher  rank  is  able  to  give  a  better 
 performance  in  terms  of  MAP@100  on  the  validation 
 set.  The  trend  in  Figure  1b  suggests  that  we  can 
 increase  the  model  complexity  to  a  greater  extent  by 
 increasing  the  rank,  but  limited  by  the  cluster  resource 
 limitations,  we  stopped  at  rank  25  (which  gave  the 
 best MAP). 

 We  also  saw  that  for  models  with  low  complexity 
 (Rank  10-20),  the  optimal  regularization  parameter 
 was  0.01,  but  for  higher  model  complexity  (Rank  25), 
 a  higher  regularization  parameter  0.1  gave  optimal 
 results. 

 A  complete  table  of  hyperparameter  tuning  results  is 
 given  in  Table  3  .  The  best  performing  model  has  rank 
 25,  alpha  0.5  and  reg-param  as  0.1  with  a  MAP@100 
 of 0.08234. 



 3.2.3  Evaluation 

 Rank  Reg- 
 param  Alpha  Precision 

 @100 
 MAP 
 @100 

 NDCG 
 @100 

 10  0.1  0.1  0.11932  0.04919  0.12686 

 10  0.1  0.5  0.13226  0.05594  0.14083 

 10  0.1  0.8  0.13332  0.05600  0.14159 

 10  0.01  0.5  0.13334  0.05703  0.14256 

 10  0.001  0.5  0.12905  0.05446  0.13815 

 20  0.01  0.5  0.15982  0.07392  0.1704 

 20  0.1  0.5  0.15777  0.07263  0.16898 

 20  0.01  0.8  0.15986  0.07393  0.17093 

 20  0.01  1.2  0.16088  0.07184  0.16986 

 25  0.01  0.5  0.17005  0.08069  0.18132 

 25  0.01  0.8  0.17177  0.08039  0.1823 

 25  0.1  0.5  0.17145  0.08234  0.18234 

 Table 3:  ALS Hyperparameter Tuning Results 

 The  test-set  performance  for  the  best-performing 
 model  from  the  previous  section  is  slightly  worse  than 
 the  validation-set  (0.064  v/s  0.082).  A  potential  reason 
 for  the  dip  in  performance  is  that  the  test  is  set  far 
 ahead  in  time  compared  to  the  validation  dataset, 
 which will result in a distribution shift in the data. 

 Rank  Reg- 
 param  Alpha  Precision 

 @100 
 MAP 
 @100 

 NDCG 
 @100 

 25  0.1  0.5  0.13848  0.063959  0.14834 

 Table 4:  ALS Test Set Results 

 3.2.4  Comparison with Baseline 

 The  test-set  MAP@100  for  the  ALS  model  (0.06396) 
 is  a  substantial  improvement  (almost  65x)  over  the 
 baseline  model  (0.00098).  The  improvement  is 
 majorly  driven  due  to  the  personalization  of 
 recommendations for the users (long tail). 

 4.   Extensions 

 4.1  Single Machine Implementation 

 LightFM  is  a  python-based  hybrid  recommender 
 system  library  that  combines  both  content  based  and 
 collaborative  filtering,  offering  flexibility  and  accuracy 
 in  recommendation  tasks.  It  is  designed  to  run 
 efficiently  on  a  single  machine,  unlike  Spark  which  is 
 designed  for  parallel  computing.  The  goal  of  this 
 extension  is  to  compare  the  time-efficiency  and 
 performance  of  LightFM  and  Spark  ALS  models  on 
 different dataset sizes. 

 4.1.1  Technical Details 

 We  installed  LightFM  version  1.16  on  a  singularity 
 container  in  the  Greene  cluster.  The  computation  was 
 performed  on  a  single  node  with  8  cores  and  64GB  of 
 memory,  enabling  efficient  data  handling  and 
 processing  within  the  available  resources.  PySpark 
 (version  3.2.1)  was  also  installed  locally  in  the 
 container  in  order  to  keep  the  evaluation  methodology 
 the same as Spark ALS. 

 The  LightFM  modules  were  trained  using  ‘warp’ 
 loss  [3]  ,  which  is  a  ranking-based  loss  function  that 
 optimizes  the  model  by  maximizing  the  margin 
 between  positive  and  negative  interactions,  improving 
 the  quality  of  the  recommendations.  LightFM  provides 
 options  to  tune  the  user  and  item  regularization 
 parameter  (called  alpha  in  LightFM),  but  for  the  sake 
 of  simplicity,  and  to  keep  the  comparison  similar,  we 
 always  kept  both  the  regularization  parameters  the 
 same. 

 For  evaluation,  the  inbuilt  functions  user  and  item 
 representations  and  biases  were  extracted,  and  the 
 score  corresponding  to  each  user-item  pair  was 
 computed  using  the  equation 
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 We  compared  the  time  taken  for  training,  and  the 
 MAP@100,  Precision@100,  and  NDCG@100  for  the 
 models  trained  using  LightFM  on  three  dataset  sizes 
 (20%,  50%,  full)  and  compared  it  with  equivalent 
 models  trained  using  Spark’s  ALS  module.  Both 
 models were trained for 10 epochs. 

 4.1.2  Hyperparameter Tuning Results 
 We  initially  trained  the  models  with  rank  =  10,  for 
 various  values  of  the  regularization  parameter.  Once 
 we  fixed  on  a  regularization  parameter,  we  then 
 increased  the  number  of  components  to  25  for  full 
 training.  The  results  from  the  hyperparameter  tuning 
 are presented in  Table 5  . 

 The  best  results  are  achieved  with  rank  25  and  a 
 regularization parameter of  .  1  0 − 6 

 We  note  that  this  is  not  the  most  ideal  way  to  perform 
 hyperparameter  tuning  as  LightFM  provides  separate 
 item  and  user  regularization  terms,  and  we  are  not 
 limited  to  rank  25  on  a  single  machine  as  it  is  not  a 
 shared  resource  with  bottlenecks.  However,  we 
 wanted  to  keep  the  variability  between  LightFM  and 
 Spark  ALS  as  similar  as  possible  to  be  able  to 
 compare  model  efficiency  and  accuracy  effectively, 
 and thus restricted our hyperparameter search. 



 alpha  rank  MAP 
 @100 

 Precision 
 @100 

 NDCG 
 @100 

 0  10  0.0313421  0.099821  0.101932 

 1  0 − 8  10  0.0322055  0.101652  0.103117 

 1  0 − 6  10  0.0372291  0.112314  0.113815 

 1  0 − 4  10  0.0000035  0.000067  0.000064 

 1  0 − 2  10  0.0000002  0.000013  0.000010 

 1  0 − 8  20  0.0474944  0.134562  0.136681 

 1  0 − 8  25  0.0478640  0.137506  0.139740 

 1  0 − 6  25  0.0702000  0.172900  0.176100 

 Table 5:  LightFM Hyperparameter Tuning Results 

 4.1.3  Results 
 Table  6  contains  the  comparison  of  the  Spark  ALS 
 and  LightFM  models  on  various  dataset  sizes.  The 
 time  taken  to  train  the  model  on  20%  and  50% 
 datasets  are  comparable.  On  the  full  dataset,  the  time 
 taken  by  LightFM  is  much  higher  at  18  minutes  and 
 23  seconds  compared  to  the  8  minutes  and  37 
 seconds  for  the  ALS  model.  One  key  difference 
 between  ALS  and  LightFM  is  that  ALS  maintains  its 
 performance  on  both  the  20%  and  50%  datasets, 
 whereas  the  performance  of  LightFM  severely  suffers 
 by  reducing  the  size  of  the  dataset.  Note  that  the 
 dataset  size  is  reduced  to  20%  and  50%  in  a  stratified 
 manner,  where  we  remove  the  corresponding 
 proportion  of  the  data  for  each  user  instead  of 
 randomly removing a portion of the dataset. 

 Dataset 
 Size  Method  Training Time 

 (min:sec) 
 MAP 
 @100 

 Precision 
 @100 

 NDCG 
 @100 

 20% 
 ALS  02 : 14  0.049  0.11502  0.12409 

 LightFM  02 : 01  8.34  X  1  0 − 6  0.00001  0.00001 

 50% 
 ALS  05 : 24  0.061  0.13359  0.14263 

 LightFM  04 : 34  8.44  X  1  0 − 6  0.00016  0.00016 

 Full 
 ALS  08 : 37  0.064  0.13848  0.14834 

 LightFM  18 : 23  0.054  0.13830  0.1404 

 Table 6:  Comparison of ALS and LightFM (Test Set) 

 4.2  Approximate Nearest Neighbor 
 search 

 For  some  applications,  recommendations  must  be 
 served  real-time  and  it  is  crucial  to  consider  the 
 latency  of  the  recommender  system.  In  such 
 situations,  the  exactness  of  the  recommendations  can 
 be  sacrificed  for  accelerated  search  at  query  time.  In 
 a  latent  factor  model,  the  recommendations  for  a  user 
 are  produced  by  computing  the  similarity  between  the 

 latent  representation  of  the  user  and  each  item  in  the 
 item  list,  and  ranking  the  items  in  decreasing  order  of 
 similarity.  This  operation  has  time  complexity  O(nd)  , 
 where  n  is  the  number  of  items  and  d  is  the  latent 
 space  dimension.  It  is  possible  to  accelerate  this 
 computation  using  approximate  nearest  neighbor 
 search.  In  this  extension,  we  implemented 
 approximate  search  and  evaluated  the  efficiency 
 gains  and  changes  induced  in  accuracy  over 
 brute-force search. 

 4.2.1  Technical Details 

 We  used  the  annoy  module  [5]  (version  1.17.2),  which 
 is  a  C++  library  with  a  Python  wrapper  developed  by 
 Spotify  for  approximate  search.  The  computation  was 
 performed  on  a  single  node  on  the  Greene  cluster 
 with  8  cores  and  128  GB  memory.  The  module 
 implements  a  forest  of  binary  trees,  where  each  tree 
 recursively  partitions  the  vector  space  into  two 
 regions  until  there  are  at  most  k  points  in  each 
 partition.  The  points  in  the  same  partition  are  nearest 
 neighbors.  At  search  time,  the  algorithm  also 
 evaluates  other  neighboring  splits  to  find  nearest 
 neighbors  using  a  priority  queue  [6]  .  The  search  time  is 
 reduced to  O(log n * d)  . 

 The  algorithm  has  two  important  hyperparameters: 
 n_trees  (number  of  trees  to  construct)  and  search_k 
 (number  of  candidates  to  find).  Increasing  the  number 
 of  trees  and  candidates  leads  to  a  greater  probability 
 of  finding  favorable  splits  and  points  that  are  close  to 
 each  other  in  the  latent  space.  The  default  number  of 
 candidates  are  the  product  of  the  number  of  trees  and 
 the number of closest neighbors. 

 We  used  ALS  with  20  latent  factors,  which  took  an 
 inference  time  of  1  hour,  30  minutes,  and  34  seconds. 
 The  metrics  for  ALS  were  Precision@100=0.16, 
 MAP@100=0.07,  and  NDCG@100=0.17.  To 
 implement  ANN,  we  need  to  define  an  index  and  add 
 latent  representations  to  the  index.  This  was  done 
 using  a  Dask  bag  to  reduce  memory  usage.  The 
 index  is  then  built  based  on  the  number  of  trees  we 
 define. 

 4.2.2  Results 

 Table  7  shows  the  results  of  hyperparameter  tuning  of 
 the  annoy  algorithm.  For  each  configuration,  adding 
 the  latent  representations  to  the  index  takes  about  10 
 minutes,  and  further  time  to  build  the  index  (indicated 
 in  the  table).  As  expected,  if  we  increase  the  number 
 of  trees,  the  metrics  on  the  validation  set  improve,  but 
 the  approximate  nearest  neighbor  search  takes  a 
 longer  time  (  Figure  2  ).  Increasing  the  number  of 
 candidates  (k)  leads  to  an  increase  in  the  metrics  with 
 little  to  no  increase  in  the  search  time.  The  best 
 results  were  obtained  with  50  trees,  500k  candidates. 



 This  is  a  8x  (700%)  speedup,  but  just  a  17%  decrease 
 in  the  Precision@100.  Thus  by  just  working  with  a 
 small  fraction  of  nearest  neighbor  candidates  (0.5M 
 out  of  23M),  it  is  possible  to  obtain  results  that  are 
 comparable to exhaustive search. 

 It  is  worth  noting  that  the  time  taken  by  ALS  with 
 exhaustive  search  may  be  affected  by  cluster 
 resources  and  warrants  further  investigation  to 
 ascertain the true speedup under identical conditions. 

 Hyper- 
 parameter  Time  Metrics 

 n_ 
 trees  k  Index 

 build 
 ANN 

 search 
 Speed 

 up 
 Precision 

 @100 
 MAP 
 @100 

 NDCG 
 @100 

 1  100  1m 53s  0.20s  27k  0.0019  0.0002  0.0020 

 10  1k  2m 36s  1.37s  4k  0.0112  0.0016  0.0111 

 20  2k  5m 28s  8m 40s  10.5  0.0168  0.0025  0.0160 

 50  5k  15m 35s  17m 59s  5.0  0.0278  0.0046  0.0277 

 50  10k  15m 35s  17m 16s  5.0  0.0382  0.0070  0.0384 

 50  25k  15m 35s  11m 12s  8.1  0.0566  0.0120  0.0571 

 50  50k  15m 35s  10m 38s  8.5  0.0733  0.0176  0.0737 

 50  500k  15m 35s  11m 24s  7.9  0.1331  0.0470  0.1338 

 100  10k  27m 1s  20m 10s  4.5  0.0413  0.0077  0.0415 

 200  20k  61m 9s  98m 17s  0.9  0.0583  0.0123  0.0580 

 Table 7:  ANN Validation Results 

 Figure 2:  Number of trees vs precision, search time. 
 To  conclude,  improved  precision  comes  at  the  cost  of 
 increased  search  time  (  Figure  3  ).  By  appropriately 
 tuning  the  hyperparameters  for  the  approximate 
 search,  it  is  possible  to  obtain  a  significant  speedup  in 
 inference  time  compared  to  the  ALS  model,  while  still 
 maintaining  a  similar  recommendation  performance. 
 Furthermore,  performing  search  on  richer  user-tem 
 latent  representations  (higher  rank)  might  mitigate  this 
 tradeoff between speed and performance further. 

 Figure 3:  Search time vs Precision gain 

 5. Conclusion 
 The  ALS  Latent  Factor  model  exhibited  a  remarkable 
 65-fold  improvement  over  the  baseline  popularity 
 model,  indicating  its  superior  recommendation 
 capabilities.  The  ALS  model  can  be  further  improved 
 by  increasing  the  complexity  through  a  higher  rank 
 model,  provided  computational  resources.  While  a 
 single  machine  implementation  of  LightFM  on  large 
 datasets  took  slightly  longer  than  ALS  on  a  multi-node 
 setup,  their  performance  was  similar.  However,  on 
 smaller  datasets,  ALS  maintained  better  prediction 
 accuracy  compared  to  LightFM,  which  showed  a 
 decline  in  performance.  To  increase  inference  speed, 
 we  can  leverage  Approximate  Nearest  Neighbors 
 (ANN)  techniques  like  annoy,  potentially  enhancing 
 the overall efficiency of the recommendation system. 
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