Center for Data Science, NYU, 2023

Group 4 | Code link

An Implicit Feedback Music Recommender System
Big Data Capstone Project

Harsha Koneru
hk3820@nyu.edu

ABSTRACT

In this project, we used a 11.6 GB real-world dataset
of music listening behavior containing data on ~8000
users, over 23 million tracks and 179 million
user-track interactions to build an implicit feedback
music recommender system using Spark.

We preprocessed and partitioned our data,
implemented a baseline and Latent Factor model, and
evaluated the model recommendations. We compared
the multi-node performance with a single machine
implementation, and investigated ways to accelerate
inference using approximate search. The ALS model
achieved a MAP@100 of 0.064 and NDCG@100 of
0.15 on the test set.

METHODOLOGY

1. Data Preprocessing

Since the songs in our dataset need to map to distinct
IDs, we first produced unique IDs for each track. We
removed duplicate interactions (~15k) in the
interactions table. Over 45% tracks only had a single
interaction, therefore, we did not remove tracks with
few interactions. We also did not remove tracks with a
very large number of interactions, since this would
bias the results of our popularity model. Furthermore,
for the ALS model, we performed hyper-parameter
tuning on the count importance, thus invalidating the
removal of tracks with high interaction count. On the
user level, we did not clip users with interaction
counts at the ends, since we define our popularity
model based on the number of distinct users per
track.

2. Cross-Validation split

We compared several data splitting strategies for
recommender systems!”. Although the Temporal
Global split is the most strict and realistic setting, it
reduces the number of users and tracks in the train
set and aggravates the cold-start problem. Therefore,
we used a Temporal User 80:20 split to partition each
user’s data into the Train and Validation set based on
the interaction timestamp. This strategy is better than
a random split since it accounts for the time of

Sharad Dargan
sd5251@nyu.edu

Sargun Nagpal
sn3250@nyu.edu

interaction for each user. However, it suffers from the
data leakage problem since the split boundary for
each user is not uniform. Table 1 shows the statistics
of our data.

Dataset Users Tracks Interactions
Train 7852 211 M 1435 M
Val 7909 9.0 M 359M
Test 7125 1.9M 50.0 M

Table 1: Data Characteristics.

3. Modeling

3.1 Baseline Popularity Model

We tried three approaches to define track popularity
for our baseline model: Number of interactions per
user, Number of distinct users, and Number of
interactions per track?. We used a damping factor 8
for the interactions per user model, and performed
hyperparameter tuning on the validation set with B
values 1, 10, 50, 200, 500, 1000, and 10000.

3.1.1 Evaluation

We calculated the Precision@100, which gives a
measure of the proportion of correct predictions;
MAP@100, which rewards the top ranking of correct
predictions; and NDCG@100, which discounts
recommendation relevance based on the rank and
normalizes the resulting discounted cumulative gain.
Table 2 shows the results of the baseline model.

Evaluation Popularity
Dataset Metric

Damping MAP@10 NDCG@10
Factor 0 0

B=1 0.000012 0.00011
B=10 0.000018 = 0.00023
B=50 0.00004 0.0005

#
N Interactions/user =200 0.00011 0.0021
Validation
Set =500 0.00106 | 0.01173
=1000 0.00306 @ 0.02158
B=10000 0.00485 0.02853
Distinct Users - 0.00893 | 0.03697
Interactions - 0.00508 @ 0.02913

https://github.com/nyu-big-data/final-project-group4

Interactions/

B=10000 0.00098 0.00871

user
TestSet 4 bistinct Users - 0.00086 0.00815
Interactions - 0.00097 0.00869

Table 2: Results of the Baseline popularity model.

Baseline model with popularity metric as Number of
interactions per user performs the best on the test set
(with 3=10000 as tuned using the validation set). Note
that with high values of beta, this metric closely
approximates the number of interactions per track.

3.2 Latent Factor Model

In order to create personalized recommendations for
users using collaborative filtering techniques, we
employ latent factor models. These models enable us
to learn a condensed representation of users and
items in a low-dimensional latent space based on
implicit feedback data from past user-item
interactions. By estimating these latent factors, the
model can predict the missing feedback in the utility
matrix for each user-item combination, which we use
for the recommendations.

3.2.1 Alternating Least Squares

Due to the scale of the data, we trained the model
using the pyspark.mllib.recommendation (Spark
v3.1.2) implementation of alternating least squares
(ALS) on the NYU Dataproc environment, while using
HDFS for storing the intermediate files, results and
model checkpoints.

3.2.2 Model Selection

To perform hyper-parameter tuning for the latent
factor model, we tune 3 parameters - alpha (Counts
weights for implicit feedback), regparam
(regularization parameter) and rank (dimension of
latent representation) by varying them individually,
while keeping the other parameters fixed to establish
the trend. Then, we narrow the search space for the
hyperparameters, for the higher rank models. All the
tuning is done on a validation set generated as
discussed in Section 2.

From Figure 1a, It is clear that alpha of 0.5 achieves
the best result, with a marginal improvement over
alpha of 0.8 and very bad performance at alpha 1.2.
This suggests that with a very high weights to the
implicit feedback (interactions count), we are
encouraging the model to adjust the factors to
account for very high-magnitude counts, which results
in overfitting on the training-set and poor
generalization performance on the validation set.

Validation Set (RegParam 0.01, Rank 20)
0.074 , -

0.073

0.072

MAP @100

0.071
05 06 07 08 09 10 11

Alpha

Figure 1a: MAP as a function of alpha with fixed
Rank 20, Regparam 0.01

Validation Set (Alpha 0.5, Regparam 0.01)
0.085

0.080
0.075
0.070
0.065
0.060
0.055

MAP @100

Rank

Figure 1b: MAP as a function of rank with fixed
alpha 0.5, Regparam 0.01

Rank defines the dimension of the latent factor
representations, and a higher dimensional
representation implies increased model complexity. It
is evident that a higher rank is able to give a better
performance in terms of MAP@100 on the validation
set. The trend in Figure 1b suggests that we can
increase the model complexity to a greater extent by
increasing the rank, but limited by the cluster resource
limitations, we stopped at rank 25 (which gave the
best MAP).

We also saw that for models with low complexity
(Rank 10-20), the optimal regularization parameter
was 0.01, but for higher model complexity (Rank 25),
a higher regularization parameter 0.1 gave optimal
results.

A complete table of hyperparameter tuning results is
given in Table 3. The best performing model has rank
25, alpha 0.5 and reg-param as 0.1 with a MAP@100
of 0.08234.

3.2.3 Evaluation

o | o | o [Pegsn] e T oce
10 0.1 0.1 0.11932 0.04919 0.12686
10 0.1 0.5 0.13226 0.05594 0.14083
10 0.1 0.8 0.13332 0.05600 0.14159
10 0.01 0.5 0.13334 0.05703 0.14256
10 0.001 0.5 0.12905 0.05446 0.13815
20 0.01 0.5 0.15982 0.07392 0.1704
20 0.1 0.5 0.15777 0.07263 0.16898
20 0.01 0.8 0.15986 0.07393 0.17093
20 0.01 1.2 0.16088 0.07184 0.16986
25 0.01 0.5 0.17005 0.08069 0.18132
25 0.01 0.8 0.17177 0.08039 0.1823
25 0.1 0.5 0.17145 0.08234 0.18234

Table 3: ALS Hyperparameter Tuning Results

The test-set performance for the best-performing
model from the previous section is slightly worse than
the validation-set (0.064 v/s 0.082). A potential reason
for the dip in performance is that the test is set far
ahead in time compared to the validation dataset,
which will result in a distribution shift in the data.

Reg- Precision| MAP NDCG
Rank | garam | APha | "'G100 | @100 | @100
25 0.1 05 | 013848 | 0.063950 | 0.14834

Table 4: ALS Test Set Results

3.2.4 Comparison with Baseline

The test-set MAP@100 for the ALS model (0.06396)
is a substantial improvement (almost 65x) over the
baseline model (0.00098). The improvement is
majorly driven due to the personalization of
recommendations for the users (long tail).

4. Extensions

4.1 Single Machine Implementation

LightFM is a python-based hybrid recommender
system library that combines both content based and
collaborative filtering, offering flexibility and accuracy
in recommendation tasks. It is designed to run
efficiently on a single machine, unlike Spark which is
designed for parallel computing. The goal of this
extension is to compare the time-efficiency and
performance of LightFM and Spark ALS models on
different dataset sizes.

4.1.1 Technical Details

We installed LightFM version 1.16 on a singularity
container in the Greene cluster. The computation was
performed on a single node with 8 cores and 64GB of
memory, enabling efficient data handling and
processing within the available resources. PySpark
(version 3.2.1) was also installed locally in the
container in order to keep the evaluation methodology
the same as Spark ALS.

The LightFM modules were trained using ‘warp’
loss®!, which is a ranking-based loss function that
optimizes the model by maximizing the margin
between positive and negative interactions, improving
the quality of the recommendations. LightFM provides
options to tune the user and item regularization
parameter (called alpha in LightFM), but for the sake
of simplicity, and to keep the comparison similar, we
always kept both the regularization parameters the
same.

For evaluation, the inbuilt functions user and item
representations and biases were extracted, and the
score corresponding to each user-item pair was
computed using the equation
s(u, i) = <wu, Wi> + bu + bi, where w,w,

are the weights of the user and item, and bu, bi are
the biases of the user and item respectively.

We compared the time taken for training, and the
MAP@100, Precision@100, and NDCG@100 for the
models trained using LightFM on three dataset sizes
(20%, 50%, full) and compared it with equivalent
models trained using Spark’'s ALS module. Both
models were trained for 10 epochs.

4.1.2 Hyperparameter Tuning Results

We initially trained the models with rank = 10, for
various values of the regularization parameter. Once
we fixed on a regularization parameter, we then
increased the number of components to 25 for full
training. The results from the hyperparameter tuning
are presented in Table 5.

The best results are achieved with rank 25 and a
regularization parameter of 10",

We note that this is not the most ideal way to perform
hyperparameter tuning as LightFM provides separate
item and user regularization terms, and we are not
limited to rank 25 on a single machine as it is not a
shared resource with bottlenecks. However, we
wanted to keep the variability between LightFM and
Spark ALS as similar as possible to be able to
compare model efficiency and accuracy effectively,
and thus restricted our hyperparameter search.

alpha rank MAP Precision NDCG

@100 @100 @100
0 10 0.0313421 0.099821 | 0.101932
1078 10 0.0322055 0.101652 | 0.103117
107° 10 0.0372291 0.112314 | 0.113815
107" 10 0.0000035 0.000067 | 0.000064
1072 10 0.0000002 0.000013 | 0.000010
1078 20 0.0474944 0.134562 | 0.136681
107° 25 0.0478640 0.137506 | 0.139740
107° 25 0.0702000 0.172900 | 0.176100

Table 5: LightFM Hyperparameter Tuning Results

4.1.3 Results

Table 6 contains the comparison of the Spark ALS
and LightFM models on various dataset sizes. The
time taken to train the model on 20% and 50%
datasets are comparable. On the full dataset, the time
taken by LightFM is much higher at 18 minutes and
23 seconds compared to the 8 minutes and 37
seconds for the ALS model. One key difference
between ALS and LightFM is that ALS maintains its
performance on both the 20% and 50% datasets,
whereas the performance of LightFM severely suffers
by reducing the size of the dataset. Note that the
dataset size is reduced to 20% and 50% in a stratified
manner, where we remove the corresponding
proportion of the data for each user instead of
randomly removing a portion of the dataset.

Dataset Method Training Time MAP Precision NDCG
Size (min:sec) @100 @100 @100
ALS 02:14 0.049 0.11502 0.12409
20%
LightFM 02:01 8.34x10 °| 0.00001 0.00001
ALS 05:24 0.061 0.13359 0.14263
50%
LightFM 04:34 8.44x10°%| 0.00016 0.00016
ALS 08 : 37 0.064 0.13848 0.14834
Full
LightFM 18:23 0.054 0.13830 0.1404

Table 6: Comparison of ALS and LightFM (Test Set)

4.2 Approximate Nearest Neighbor
search

For some applications, recommendations must be
served real-time and it is crucial to consider the
latency of the recommender system. In such
situations, the exactness of the recommendations can
be sacrificed for accelerated search at query time. In
a latent factor model, the recommendations for a user
are produced by computing the similarity between the

latent representation of the user and each item in the
item list, and ranking the items in decreasing order of
similarity. This operation has time complexity O(nd),
where n is the number of items and d is the latent
space dimension. It is possible to accelerate this
computation using approximate nearest neighbor
search. In this extension, we implemented
approximate search and evaluated the efficiency
gains and changes induced in accuracy over
brute-force search.

4.2.1 Technical Details

We used the annoy module®® (version 1.17.2), which
is a C++ library with a Python wrapper developed by
Spotify for approximate search. The computation was
performed on a single node on the Greene cluster
with 8 cores and 128 GB memory. The module
implements a forest of binary trees, where each tree
recursively partitions the vector space into two
regions until there are at most k points in each
partition. The points in the same partition are nearest
neighbors. At search time, the algorithm also
evaluates other neighboring splits to find nearest
neighbors using a priority queue'®. The search time is
reduced to O(log n * d).

The algorithm has two important hyperparameters:
n_trees (number of trees to construct) and search _k
(number of candidates to find). Increasing the number
of trees and candidates leads to a greater probability
of finding favorable splits and points that are close to
each other in the latent space. The default number of
candidates are the product of the number of trees and
the number of closest neighbors.

We used ALS with 20 latent factors, which took an
inference time of 1 hour, 30 minutes, and 34 seconds.
The metrics for ALS were Precision@100=0.16,
MAP@100=0.07, and NDCG@100=0.17. To
implement ANN, we need to define an index and add
latent representations to the index. This was done
using a Dask bag to reduce memory usage. The
index is then built based on the number of trees we
define.

4.2.2 Results

Table 7 shows the results of hyperparameter tuning of
the annoy algorithm. For each configuration, adding
the latent representations to the index takes about 10
minutes, and further time to build the index (indicated
in the table). As expected, if we increase the number
of trees, the metrics on the validation set improve, but
the approximate nearest neighbor search takes a
longer time (Figure 2). Increasing the number of
candidates (k) leads to an increase in the metrics with
litle to no increase in the search time. The best
results were obtained with 50 trees, 500k candidates.

This is a 8x (700%) speedup, but just a 17% decrease
in the Precision@100. Thus by just working with a
small fraction of nearest neighbor candidates (0.5M
out of 23M), it is possible to obtain results that are
comparable to exhaustive search.

It is worth noting that the time taken by ALS with
exhaustive search may be affected by cluster
resources and warrants further investigation to
ascertain the true speedup under identical conditions.

Hyper-

Time Metrics
parameter
n_ K Index ANN Speed |Precision, MAP | NDCG
trees build | search up @100 @100 @100
1 100 1m53s | 0.20s 27k 0.0019 | 0.0002 |0.0020
10 1k | 2m36s | 1.37s 4k 0.0112 | 0.0016 | 0.0111
20 2k | 5m28s | 8m40s @ 10.5 | 0.0168 | 0.0025 | 0.0160
50 5k 1 15m 35s [17m59s| 5.0 0.0278 | 0.0046 |0.0277
50 | 10k |15m 35s [177m 16s| 5.0 0.0382 | 0.0070 |0.0384
50 | 25k |15m 35s |11m 12s | 8.1 0.0566 |0.0120 | 0.0571
50 | 50k |15m 35s |10m 38s| 8.5 0.0733 | 0.0176 | 0.0737
50 500k 15m 35s 11m24s 7.9 0.1331 | 0.0470 | 0.1338
100 | 10k | 27m1s [20m 10s| 4.5 0.0413 | 0.0077 |0.0415
200 | 20k | 61m9s |98m 17s| 0.9 0.0583 | 0.0123 | 0.0580
Table 7: ANN Validation Results
¥ -0.06
6000 Precision @100 /
5000 1 +0.05
/ S
o
. 4000 A F0.04 —
0 / ®
o 3000 4 003 S
E / &
}_ i o —
2000 /‘-—_—/ L 0.02 g
1000 - L 0.01
04 / —TiMe 0.00

0 25 50 75 100 125 150 175 200
n_trees

Figure 2: Number of trees vs precision, search time.

To conclude, improved precision comes at the cost of
increased search time (Figure 3). By appropriately
tuning the hyperparameters for the approximate
search, it is possible to obtain a significant speedup in
inference time compared to the ALS model, while still
maintaining a similar recommendation performance.
Furthermore, performing search on richer user-tem
latent representations (higher rank) might mitigate this
tradeoff between speed and performance further.

6000

4000

3000

Time (s)

2000

1000

T T

000 001 002 003 004 005 006
Precision @100

Figure 3: Search time vs Precision gain

5. Conclusion

The ALS Latent Factor model exhibited a remarkable

65-fold
model,

improvement over the baseline popularity
indicating its superior recommendation

capabilities. The ALS model can be further improved
by increasing the complexity through a higher rank
model, provided computational resources. While a
single machine implementation of LightFM on large
datasets took slightly longer than ALS on a multi-node
setup, their performance was similar. However, on
smaller datasets, ALS maintained better prediction
accuracy compared to LightFM, which showed a
decline in performance. To increase inference speed,
we can leverage Approximate Nearest Neighbors
(ANN) techniques like annoy, potentially enhancing
the overall efficiency of the recommendation system.

6. Author Contributions

Harsha focused on train-validation split and LightFM
model creation, Sargun worked on the Baseline
model and approximate nearest neighbor search,
while Sharad handled data preparation and ALS. All
team members reviewed and provided valuable
feedback on each other's work, contributing equally to
the project.

REFERENCES

M1

[21

131

41
151

[61

Zaigiao Meng University of Glasgow et al. 2020. Exploring data splitting strategies
for the evaluation of recommendation models: Proceedings of the 14th ACM
conference on recommender systems. (September 2020). Retrieved April 26, 2023
from https://dl.acm.org/doi/10.1145/3383313.3418479

Yitong Ji Nanyang Technological University et al. 2020. A re-visit of the popularity
baseline in Recommender Systems: Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development in Information Retrieval. (July
2020). Retrieved April 26, 2023 from
https://dl.acm.org/doi/10.1145/3397271.3401233

Weston, Jason, et al. “Learning to Rank Recommendations with the K-Order Statistic
Loss.” Conference on Recommender Systems, 12 Oct. 2013,
https://doi.org/10.1145/2507157.2507210. Accessed 27 Apr. 2023.

Maciej, Kula, and Lyst. Metadata Embeddings for User and ltem Cold-Start
Recommendations. https://arxiv.org/pdf/1507.08439.pdf

Spotify. “Spotify/Annoy: Approximate Nearest Neighbors in C++/Python Optimized
for Memory Usage and Loading/Saving to Disk.” GitHub, github.com/spotify/annoy.
Accessed 16 May 2023.

Erik Bernhardsson. “Nearest Neighbors and Vector Models — Part 2 — Algorithms
and Data Structures.” Erik Bernhardsson, 19 Apr. 2020,
erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-searc
h-in-high-dimensional-spaces.html.

