
 Center for Data Science, NYU, 2023 Group 4 | Code link

 An Implicit Feedback Music Recommender System
 Big Data Capstone Project

 Harsha Koneru
 hk3820@nyu.edu

 Sharad Dargan
 sd5251@nyu.edu

 Sargun Nagpal
 sn3250@nyu.edu

 ABSTRACT
 In this project, we used a 11.6 GB real-world dataset
 of music listening behavior containing data on ~8000
 users, over 23 million tracks and 179 million
 user-track interactions to build an implicit feedback
 music recommender system using Spark.

 We preprocessed and partitioned our data,
 implemented a baseline and Latent Factor model, and
 evaluated the model recommendations. We compared
 the multi-node performance with a single machine
 implementation, and investigated ways to accelerate
 inference using approximate search. The ALS model
 achieved a MAP@100 of 0.064 and NDCG@100 of
 0.15 on the test set.

 METHODOLOGY

 1. Data Preprocessing
 Since the songs in our dataset need to map to distinct
 IDs, we first produced unique IDs for each track. We
 removed duplicate interactions (~15k) in the
 interactions table. Over 45% tracks only had a single
 interaction, therefore, we did not remove tracks with
 few interactions. We also did not remove tracks with a
 very large number of interactions, since this would
 bias the results of our popularity model. Furthermore,
 for the ALS model, we performed hyper-parameter
 tuning on the count importance, thus invalidating the
 removal of tracks with high interaction count. On the
 user level, we did not clip users with interaction
 counts at the ends, since we define our popularity
 model based on the number of distinct users per
 track.

 2. Cross-Validation split
 We compared several data splitting strategies for
 reco mmender sy stems [1] . Although the Temporal
 Global split is the most strict and realistic setting, it
 reduces the number of users and tracks in the train
 set and aggravates the cold-start problem. Therefore,
 we used a Temporal User 80:20 split to partition each
 user’s data into the Train and Validation set based on
 the interaction timestamp. This strategy is better than
 a random split since it accounts for the time of

 interaction for each user. However, it suffers from the
 data leakage problem since the split boundary for
 each user is not uniform. Table 1 shows the statistics
 of our data.

 Dataset Users Tracks Interactions
 Train 7852 21.1 M 143.5 M
 Val 7909 9.0 M 35.9 M
 Test 7125 1.9 M 50.0 M

 Table 1: Data Characteristics.

 3. Modeling

 3.1 Baseline Popularity Model
 We tried three approaches to define track popularity
 for our baseline model: Number of interactions per
 user, Number of distinct users, and Number of
 interactions per track [2] . We used a damping factor β
 for the interactions per user model, and performed
 hyperparameter tuning on the validation set with β
 values 1, 10, 50, 200, 500, 1000, and 10000.

 3.1.1 Evaluation
 We calculated the Precision@100, which gives a
 measure of the proportion of correct predictions;
 MAP@100, which rewards the top ranking of correct
 predictions; and NDCG@100, which discounts
 recommendation relevance based on the rank and
 normalizes the resulting discounted cumulative gain.
 Table 2 shows the results of the baseline model.

 Evaluation
 Dataset

 Popularity
 Metric

 Damping
 Factor

 MAP@10
 0

 NDCG@10
 0

 Validation
 Set

 #
 Interactions/user

 =1 0.000012 0.00011

 =10 0.000018 0.00023

 =50 0.00004 0.0005

 =200 0.00011 0.0021

 =500 0.00106 0.01173

 =1000 0.00306 0.02158

 =10000 0.00485 0.02853
 # Distinct Users - 0.00893 0.03697

 # Interactions - 0.00508 0.02913

https://github.com/nyu-big-data/final-project-group4

 Test Set

 # Interactions/
 user =10000 0.00098 0.00871

 # Distinct Users - 0.00086 0.00815

 # Interactions - 0.00097 0.00869

 Table 2: Results of the Baseline popularity model.

 Baseline model with popularity metric as Number of
 interactions per user performs the best on the test set
 (with =10000 as tuned using the validation set). Note
 that with high values of beta, this metric closely
 approximates the number of interactions per track.

 3.2 Latent Factor Model

 In order to create personalized recommendations for
 users using collaborative filtering techniques, we
 employ latent factor models. These models enable us
 to learn a condensed representation of users and
 items in a low-dimensional latent space based on
 implicit feedback data from past user-item
 interactions. By estimating these latent factors, the
 model can predict the missing feedback in the utility
 matrix for each user-item combination, which we use
 for the recommendations.

 3.2.1 Alternating Least Squares

 Due to the scale of the data, we trained the model
 using the pyspark.mllib.recommendation (Spark
 v3.1.2) implementation of alternating least squares
 (ALS) on the NYU Dataproc environment, while using
 HDFS for storing the intermediate files, results and
 model checkpoints.

 3.2.2 Model Selection

 To perform hyper-parameter tuning for the latent
 factor model, we tune 3 parameters - alpha (Counts
 weights for implicit feedback), regparam
 (regularization parameter) and rank (dimension of
 latent representation) by varying them individually,
 while keeping the other parameters fixed to establish
 the trend. Then, we narrow the search space for the
 hyperparameters, for the higher rank models. All the
 tuning is done on a validation set generated as
 discussed in Section 2.

 From Figure 1a , It is clear that alpha of 0.5 achieves
 the best result, with a marginal improvement over
 alpha of 0.8 and very bad performance at alpha 1.2.
 This suggests that with a very high weights to the
 implicit feedback (interactions count), we are
 encouraging the model to adjust the factors to
 account for very high-magnitude counts, which results
 in overfitting on the training-set and poor
 generalization performance on the validation set.

 Figure 1a: MAP as a function of alpha with fixed
 Rank 20, Regparam 0.01

 Figure 1b: MAP as a function of rank with fixed
 alpha 0.5, Regparam 0.01

 Rank defines the dimension of the latent factor
 representations, and a higher dimensional
 representation implies increased model complexity. It
 is evident that a higher rank is able to give a better
 performance in terms of MAP@100 on the validation
 set. The trend in Figure 1b suggests that we can
 increase the model complexity to a greater extent by
 increasing the rank, but limited by the cluster resource
 limitations, we stopped at rank 25 (which gave the
 best MAP).

 We also saw that for models with low complexity
 (Rank 10-20), the optimal regularization parameter
 was 0.01, but for higher model complexity (Rank 25),
 a higher regularization parameter 0.1 gave optimal
 results.

 A complete table of hyperparameter tuning results is
 given in Table 3 . The best performing model has rank
 25, alpha 0.5 and reg-param as 0.1 with a MAP@100
 of 0.08234.

 3.2.3 Evaluation

 Rank Reg-
 param Alpha Precision

 @100
 MAP
 @100

 NDCG
 @100

 10 0.1 0.1 0.11932 0.04919 0.12686

 10 0.1 0.5 0.13226 0.05594 0.14083

 10 0.1 0.8 0.13332 0.05600 0.14159

 10 0.01 0.5 0.13334 0.05703 0.14256

 10 0.001 0.5 0.12905 0.05446 0.13815

 20 0.01 0.5 0.15982 0.07392 0.1704

 20 0.1 0.5 0.15777 0.07263 0.16898

 20 0.01 0.8 0.15986 0.07393 0.17093

 20 0.01 1.2 0.16088 0.07184 0.16986

 25 0.01 0.5 0.17005 0.08069 0.18132

 25 0.01 0.8 0.17177 0.08039 0.1823

 25 0.1 0.5 0.17145 0.08234 0.18234

 Table 3: ALS Hyperparameter Tuning Results

 The test-set performance for the best-performing
 model from the previous section is slightly worse than
 the validation-set (0.064 v/s 0.082). A potential reason
 for the dip in performance is that the test is set far
 ahead in time compared to the validation dataset,
 which will result in a distribution shift in the data.

 Rank Reg-
 param Alpha Precision

 @100
 MAP
 @100

 NDCG
 @100

 25 0.1 0.5 0.13848 0.063959 0.14834

 Table 4: ALS Test Set Results

 3.2.4 Comparison with Baseline

 The test-set MAP@100 for the ALS model (0.06396)
 is a substantial improvement (almost 65x) over the
 baseline model (0.00098). The improvement is
 majorly driven due to the personalization of
 recommendations for the users (long tail).

 4.  Extensions

 4.1 Single Machine Implementation

 LightFM is a python-based hybrid recommender
 system library that combines both content based and
 collaborative filtering, offering flexibility and accuracy
 in recommendation tasks. It is designed to run
 efficiently on a single machine, unlike Spark which is
 designed for parallel computing. The goal of this
 extension is to compare the time-efficiency and
 performance of LightFM and Spark ALS models on
 different dataset sizes.

 4.1.1 Technical Details

 We installed LightFM version 1.16 on a singularity
 container in the Greene cluster. The computation was
 performed on a single node with 8 cores and 64GB of
 memory, enabling efficient data handling and
 processing within the available resources. PySpark
 (version 3.2.1) was also installed locally in the
 container in order to keep the evaluation methodology
 the same as Spark ALS.

 The LightFM modules were trained using ‘warp’
 loss [3] , which is a ranking-based loss function that
 optimizes the model by maximizing the margin
 between positive and negative interactions, improving
 the quality of the recommendations. LightFM provides
 options to tune the user and item regularization
 parameter (called alpha in LightFM), but for the sake
 of simplicity, and to keep the comparison similar, we
 always kept both the regularization parameters the
 same.

 For evaluation, the inbuilt functions user and item
 representations and biases were extracted, and the
 score corresponding to each user-item pair was
 computed using the equation

 , where 𝑠 (𝑢 , 𝑖) = < 𝑤
 𝑢
, 𝑤

 𝑖
> + 𝑏

 𝑢
 + 𝑏

 𝑖
 𝑤

 𝑢
, 𝑤

 𝑖
 are the weights of the user and item, and are 𝑏

 𝑢
, 𝑏

 𝑖
 the biases of the user and item respectively [4] .

 We compared the time taken for training, and the
 MAP@100, Precision@100, and NDCG@100 for the
 models trained using LightFM on three dataset sizes
 (20%, 50%, full) and compared it with equivalent
 models trained using Spark’s ALS module. Both
 models were trained for 10 epochs.

 4.1.2 Hyperparameter Tuning Results
 We initially trained the models with rank = 10, for
 various values of the regularization parameter. Once
 we fixed on a regularization parameter, we then
 increased the number of components to 25 for full
 training. The results from the hyperparameter tuning
 are presented in Table 5 .

 The best results are achieved with rank 25 and a
 regularization parameter of . 1 0 − 6

 We note that this is not the most ideal way to perform
 hyperparameter tuning as LightFM provides separate
 item and user regularization terms, and we are not
 limited to rank 25 on a single machine as it is not a
 shared resource with bottlenecks. However, we
 wanted to keep the variability between LightFM and
 Spark ALS as similar as possible to be able to
 compare model efficiency and accuracy effectively,
 and thus restricted our hyperparameter search.

 alpha rank MAP
 @100

 Precision
 @100

 NDCG
 @100

 0 10 0.0313421 0.099821 0.101932

 1 0 − 8 10 0.0322055 0.101652 0.103117

 1 0 − 6 10 0.0372291 0.112314 0.113815

 1 0 − 4 10 0.0000035 0.000067 0.000064

 1 0 − 2 10 0.0000002 0.000013 0.000010

 1 0 − 8 20 0.0474944 0.134562 0.136681

 1 0 − 8 25 0.0478640 0.137506 0.139740

 1 0 − 6 25 0.0702000 0.172900 0.176100

 Table 5: LightFM Hyperparameter Tuning Results

 4.1.3 Results
 Table 6 contains the comparison of the Spark ALS
 and LightFM models on various dataset sizes. The
 time taken to train the model on 20% and 50%
 datasets are comparable. On the full dataset, the time
 taken by LightFM is much higher at 18 minutes and
 23 seconds compared to the 8 minutes and 37
 seconds for the ALS model. One key difference
 between ALS and LightFM is that ALS maintains its
 performance on both the 20% and 50% datasets,
 whereas the performance of LightFM severely suffers
 by reducing the size of the dataset. Note that the
 dataset size is reduced to 20% and 50% in a stratified
 manner, where we remove the corresponding
 proportion of the data for each user instead of
 randomly removing a portion of the dataset.

 Dataset
 Size Method Training Time

 (min:sec)
 MAP
 @100

 Precision
 @100

 NDCG
 @100

 20%
 ALS 02 : 14 0.049 0.11502 0.12409

 LightFM 02 : 01 8.34 X 1 0 − 6 0.00001 0.00001

 50%
 ALS 05 : 24 0.061 0.13359 0.14263

 LightFM 04 : 34 8.44 X 1 0 − 6 0.00016 0.00016

 Full
 ALS 08 : 37 0.064 0.13848 0.14834

 LightFM 18 : 23 0.054 0.13830 0.1404

 Table 6: Comparison of ALS and LightFM (Test Set)

 4.2 Approximate Nearest Neighbor
 search

 For some applications, recommendations must be
 served real-time and it is crucial to consider the
 latency of the recommender system. In such
 situations, the exactness of the recommendations can
 be sacrificed for accelerated search at query time. In
 a latent factor model, the recommendations for a user
 are produced by computing the similarity between the

 latent representation of the user and each item in the
 item list, and ranking the items in decreasing order of
 similarity. This operation has time complexity O(nd) ,
 where n is the number of items and d is the latent
 space dimension. It is possible to accelerate this
 computation using approximate nearest neighbor
 search. In this extension, we implemented
 approximate search and evaluated the efficiency
 gains and changes induced in accuracy over
 brute-force search.

 4.2.1 Technical Details

 We used the annoy module [5] (version 1.17.2), which
 is a C++ library with a Python wrapper developed by
 Spotify for approximate search. The computation was
 performed on a single node on the Greene cluster
 with 8 cores and 128 GB memory. The module
 implements a forest of binary trees, where each tree
 recursively partitions the vector space into two
 regions until there are at most k points in each
 partition. The points in the same partition are nearest
 neighbors. At search time, the algorithm also
 evaluates other neighboring splits to find nearest
 neighbors using a priority queue [6] . The search time is
 reduced to O(log n * d) .

 The algorithm has two important hyperparameters:
 n_trees (number of trees to construct) and search_k
 (number of candidates to find). Increasing the number
 of trees and candidates leads to a greater probability
 of finding favorable splits and points that are close to
 each other in the latent space. The default number of
 candidates are the product of the number of trees and
 the number of closest neighbors.

 We used ALS with 20 latent factors, which took an
 inference time of 1 hour, 30 minutes, and 34 seconds.
 The metrics for ALS were Precision@100=0.16,
 MAP@100=0.07, and NDCG@100=0.17. To
 implement ANN, we need to define an index and add
 latent representations to the index. This was done
 using a Dask bag to reduce memory usage. The
 index is then built based on the number of trees we
 define.

 4.2.2 Results

 Table 7 shows the results of hyperparameter tuning of
 the annoy algorithm. For each configuration, adding
 the latent representations to the index takes about 10
 minutes, and further time to build the index (indicated
 in the table). As expected, if we increase the number
 of trees, the metrics on the validation set improve, but
 the approximate nearest neighbor search takes a
 longer time (Figure 2). Increasing the number of
 candidates (k) leads to an increase in the metrics with
 little to no increase in the search time. The best
 results were obtained with 50 trees, 500k candidates.

 This is a 8x (700%) speedup, but just a 17% decrease
 in the Precision@100. Thus by just working with a
 small fraction of nearest neighbor candidates (0.5M
 out of 23M), it is possible to obtain results that are
 comparable to exhaustive search.

 It is worth noting that the time taken by ALS with
 exhaustive search may be affected by cluster
 resources and warrants further investigation to
 ascertain the true speedup under identical conditions.

 Hyper-
 parameter Time Metrics

 n_
 trees k Index

 build
 ANN

 search
 Speed

 up
 Precision

 @100
 MAP
 @100

 NDCG
 @100

 1 100 1m 53s 0.20s 27k 0.0019 0.0002 0.0020

 10 1k 2m 36s 1.37s 4k 0.0112 0.0016 0.0111

 20 2k 5m 28s 8m 40s 10.5 0.0168 0.0025 0.0160

 50 5k 15m 35s 17m 59s 5.0 0.0278 0.0046 0.0277

 50 10k 15m 35s 17m 16s 5.0 0.0382 0.0070 0.0384

 50 25k 15m 35s 11m 12s 8.1 0.0566 0.0120 0.0571

 50 50k 15m 35s 10m 38s 8.5 0.0733 0.0176 0.0737

 50 500k 15m 35s 11m 24s 7.9 0.1331 0.0470 0.1338

 100 10k 27m 1s 20m 10s 4.5 0.0413 0.0077 0.0415

 200 20k 61m 9s 98m 17s 0.9 0.0583 0.0123 0.0580

 Table 7: ANN Validation Results

 Figure 2: Number of trees vs precision, search time.
 To conclude, improved precision comes at the cost of
 increased search time (Figure 3). By appropriately
 tuning the hyperparameters for the approximate
 search, it is possible to obtain a significant speedup in
 inference time compared to the ALS model, while still
 maintaining a similar recommendation performance.
 Furthermore, performing search on richer user-tem
 latent representations (higher rank) might mitigate this
 tradeoff between speed and performance further.

 Figure 3: Search time vs Precision gain

 5. Conclusion
 The ALS Latent Factor model exhibited a remarkable
 65-fold improvement over the baseline popularity
 model, indicating its superior recommendation
 capabilities. The ALS model can be further improved
 by increasing the complexity through a higher rank
 model, provided computational resources. While a
 single machine implementation of LightFM on large
 datasets took slightly longer than ALS on a multi-node
 setup, their performance was similar. However, on
 smaller datasets, ALS maintained better prediction
 accuracy compared to LightFM, which showed a
 decline in performance. To increase inference speed,
 we can leverage Approximate Nearest Neighbors
 (ANN) techniques like annoy, potentially enhancing
 the overall efficiency of the recommendation system.

 6. Author Contributions
 Harsha focused on train-validation split and LightFM
 model creation, Sargun worked on the Baseline
 model and approximate nearest neighbor search,
 while Sharad handled data preparation and ALS. All
 team members reviewed and provided valuable
 feedback on each other's work, contributing equally to
 the project.

 REFERENCES
 [1] Zaiqiao Meng University of Glasgow et al. 2020. Exploring data splitting strategies

 for the evaluation of recommendation models: Proceedings of the 14th ACM
 conference on recommender systems. (September 2020). Retrieved April 26, 2023
 from https://dl.acm.org/doi/10.1145/3383313.3418479

 [2] Yitong Ji Nanyang Technological University et al. 2020. A re-visit of the popularity
 baseline in Recommender Systems: Proceedings of the 43rd International ACM
 SIGIR Conference on Research and Development in Information Retrieval. (July
 2020). Retrieved April 26, 2023 from
 https://dl.acm.org/doi/10.1145/3397271.3401233

 [3] Weston, Jason, et al. “Learning to Rank Recommendations with the K-Order Statistic
 Loss.” Conference on Recommender Systems, 12 Oct. 2013,
 https://doi.org/10.1145/2507157.2507210. Accessed 27 Apr. 2023.

 [4] Maciej, Kula, and Lyst. Metadata Embeddings for User and Item Cold-Start
 Recommendations. https://arxiv.org/pdf/1507.08439.pdf

 [5] Spotify. “Spotify/Annoy: Approximate Nearest Neighbors in C++/Python Optimized
 for Memory Usage and Loading/Saving to Disk.” GitHub , github.com/spotify/annoy.
 Accessed 16 May 2023.

 [6] Erik Bernhardsson. “Nearest Neighbors and Vector Models – Part 2 – Algorithms
 and Data Structures.” Erik Bernhardsson , 19 Apr. 2020,
 erikbern.com/2015/10/01/nearest-neighbors-and-vector-models-part-2-how-to-searc
 h-in-high-dimensional-spaces.html.

